

The Greatest CSS-Tricks - Volume I

2

This is a compendium of some of my favorite tricks I’ve come across in my time

working on the website CSS-Tricks. Most of them are not my own, but by

people far more clever than me. Here I’m showcasing them and explaining the

trick as I see it. While perhaps some of them are more “useful” than others,

there is a lot to learn from all of them, whether you ever use the technique

directly or not.

One trick, that's not covered explicitly in this book, is the trick of "CSS

drawings". I've seen thousands of these over the years, especially as I watch

people play in learn on CodePen, another site I help run. They range from

people making a smiley face with circles they build with border-radius:

50%, background colors, and absolute positioning, to honest to god trump l'oeil

masterworks make with gradients, shadows, and every CSS technique under

the sun. Why? People inevitably ask. Why use CSS for this when you could use

SVG? Or use drawing so�tware specifically designed for producing art? Why

not? might be a better question. Art need not be shackled by the bounds of

what someone might think is more efficient. But more importantly, and the

irony is thick here, I find the people that do these sorts of CSS drawings and

explorations, however "impractical", end up better practitioners of CSS in

"practical" matters as well.

So enjoy these CSS tricks, friends! I hope they bring you a little joy, and even if

you can't use them in your work immediately, your knowledge of them will

make you a more cra�ty CSS developer perhaps without you even realizing.

Chapter 1 Yellow Flash

3

Chapter 1 Yellow Flash

We’ll get to the Yellow Flash, but it all has to do with on-page scroll position

and understanding where you are. These days, CSS alone can animate the

scroll position on a page. It’s a one-liner!

html {

 scroll-behavior: smooth;

}

To some degree, this is an aesthetic choice. When a page scrolls from one

position to the next (because of, say, a “jump link” to another ID on the page),

rather than instantly jumping there the page smoothly scrolls there. Beyond

aesthetics, the point of using this might be to help a user understand context.

Oh I see, the page scrolled from here to here, and where it stopped represents where

I linked to.

But a smooth scroll isn’t the only way to emphasize that the context of linking

elsewhere on the same page. We can also do with a visual changed to the

targetted area, and I’d argue it’s most clear that way.

Fortunately, there is a CSS pseudo-selector that is perfectly suited to the job of

styling elements when they’ve been on-page linked to. The :target selector,

which can be used on any element:

The Greatest CSS-Tricks - Volume I

4

section:target {

 background: yellow;

}

What that means is: When the #hash in the URL matches the #id of this element,

this selector matches and style it like this.

So if there is an element like…

<section id="footnotes">

</section>

And the URL happens to be:

https://website.com/#footnotes

That selector matches and we’ll see it have a yellow background.

That URL would occur when a link is clicked like:

Jump to Footnotes

There is a trick here though, of course. A yellow background alone (or any

other static styling) doesn’t exactly scream you just linked here! A little

Chapter 1 Yellow Flash

5

animation can go a long way here. If you don’t just set the background of the

linked-to element to yellow but instead flash a background of yellow just

temporarily, it’s enough to draw the eye and make the action very clear.

Here is an example and demo. Say you have a link to a footnote at the bottom of

an article. This is especially interesting because a link to the bottom of a page is

especially hard to draw attention to (there may not be enough scrolling room

to get the footnote to the top of the page).

<p>

 Lorem ipsum<sup class="footnote" id="footnote-top-1">

 1</sup>

 dolor sit amet consectetur adipisicing elit.

</p>

Then at the bottom of the page, the actual footnote you’re linking to:

<div id="footnotes" class="footnotes">

 <li id="footnote-bottom-1">Lorem ipsum is Greek.

 Back to reference

 ↥

</div>

Note that both of the anchor links here are using jump links, footnote-

bottom-1 and footnote-top-1 to those respective IDs.

The Greatest CSS-Tricks - Volume I

6

We can make the footnote itself flash as you arrive at it with a

@keyframesanimation:

.footnotes :target {

 animation: yellowflash-bg 2s;

}

@keyframes yellowflash-bg {

 from { background: yellow; }

 to { background: transparent; }

}

In this case, it flashes to yellow immediately, then fades back out to a

transparent background over 2 seconds.

Chapter 1 Yellow Flash

7

That’s the Yellow Flash! Of course, it doesn’t have to be yellow and it doesn’t

even have to flash. The point is doing something to visually signify what is

being linked to for clarity.

That demo above is paired with smooth scrolling, but you might not want to do

that, as you can’t control the timing of the smooth scrolling so there is a risk

the yellow flash is done by the time you get there.

Hey, make a shake might be fun too.

https://css-tricks.com/snippets/css/shake-css-keyframe-animation/

The Greatest CSS-Tricks - Volume I

8

Chapter 2 Shape Morphing

There are lots of motion possibilities on the web. You can animate any

element’s opacity, color, and transform properties (like translate,

scale, and rotate), to name a few, all pretty easily. For example:

.kitchen-sink {

 opacity: 0.5;

 background-color: orange;

 transform: translateX(-100px) scale(1.2) rotate(1deg);

}

.kitchen-sink:hover {

 opacity: 1;

 background-color: black;

 transform: translateX(0) scale(0) rotate(0);

}

By the way, animating the transform and opacity properties are ideal

because the browser can do it “cheaply” as they say. It means that the browser

has much less work to do to make the movement happen and can take

advantage of “hardware acceleration”).

Lesser known is the fact that you can animate the actual shape of elements! I’m

not just talking about animating border-radius or moving some pseudo-

elements around (although that can certainly be useful to), I mean quite

literally morphing the vector shape of an element.

https://www.html5rocks.com/en/tutorials/speed/high-performance-animations/
https://css-tricks.com/the-shapes-of-css/

Chapter 2 Shape Morphing

9

For our first trick, let’s create the vector shape by way of clip-path. We can

cut away parts of an element at % coordinates like this:

.moving-arrow {

 width: 200px;

 height: 200px;

 background: red;

 clip-path: polygon(100% 0%, 75% 50%, 100% 100%, 25% 100%, 0% 50%, 25%

0%);

}

Clippy is an incredible tool for generating polygon() shape data. Firefox

DevTools also has pretty good built-in tooling for manipulating it once it has

been applied.

Then we can change that clip-path on some kind of state change. It could be

the change of a class, but let’s use :hover here. While we’re at it, let’s add a

transition so we can see the shape change!

https://bennettfeely.com/clippy/

The Greatest CSS-Tricks - Volume I

10

.moving-arrow {

 ...

 transition: clip-path 0.2s;

 clip-path: polygon(100% 0%, 75% 50%, 100% 100%, 25% 100%, 0% 50%, 25%

0%);

}

.moving-arrow:hover {

 clip-path: polygon(75% 0%, 100% 50%, 75% 100%, 0% 100%, 25% 50%, 0%

0%);

}

Because the polygon() has the exact same number of coordinates, the

transition works.

Using clip-path to draw vector shapes is fine, but it’s perhaps not the perfect

tool for the job of drawing vector shapes. Drawing vector shapes is really the

parlance of SVG. SVG’s elements have attributes designed for drawing. The

powerhouse is the element that has its own special syntax for drawing.

On the le�t, the original shape. On the right, the shape in the hover position. The middle

shapes represent what happens during the transition from one to another. I know looking at

animation as a still graphic isn’t all that satisfying, so go check out the online version of this

book to see the real demo.

https://css-tricks.com/svg-path-syntax-illustrated-guide/

Chapter 2 Shape Morphing

11

You might see a path like this:

<svg viewBox="0 0 20 20">

 <path d="

 M 8 0

 L 12 0

 L 12 8

 L 20 8

 L 20 12

 L 12 12

 L 12 20

 L 8 20

 L 8 12

 L 0 12

 L 0 8

 L 8 8

 L 8 0

 "></path>

</svg>

Which draws a “+” shape.

That value for the d attribute may look like gibberish, but it really just

commands the movement of a virtual pen. Move the pen here, draw a line this

far in this direction, etc.

In the example above, there are only two commands in use, which you can see

from the letters that precede each line:

M: Move the pen to these exact coordinates (without drawing)

L: Draw a line from the pen’s current coordinates to these exact

coordinates

The Greatest CSS-Tricks - Volume I

12

SVG itself has a language for altering those coordinates if we wanted to,

including animation. It’s called SMIL, but the big problem with it is that it’s old

and was never particularly well supported.

The good news is that some browsers support some of what SMIL can do right

in CSS. For example, we can alter the path on :hover in CSS like this:

https://css-tricks.com/guide-svg-animations-smil/

Chapter 2 Shape Morphing

13

svg:hover path {

 d: path("

 M 10 0

 L 10 0

 L 13 7

 L 20 10

 L 20 10

 L 13 13

 L 10 20

 L 10 20

 L 7 13

 L 0 10

 L 0 10

 L 7 7

 L 10 0

 ");

}

path {

 transition: 0.2s;

}

That turns our plus shape into a throwing star shape, and the transition is

possible because it’s the same number of points.

The cross shape morphing into a throwing star shape.

The Greatest CSS-Tricks - Volume I

14

If you’re seriously into the idea of morphing shape and want an extremely

powerful tool for helping do it, check out Greensock’s MorphSVG plugin. It

allows for a ton of control over how the shape morphs and isn’t limited to

same-number-of-points transitions.

https://greensock.com/morphsvg/

Chapter 3 Flexible Grids

15

Chapter 3 Flexible Grids

CSS Grid has a learning curve, like anything else, but a�ter a minute there is a

certain clarity to it. You set up a grid (literally columns and rows), and then

place things on those rows. The mental model of it, I’d argue, is simpler than

flexbox by a smidge.

Here I’ll set up a grid:

.grid {

 display: grid;

 grid-template-columns: 1fr 1fr 1fr;

 gap: 1rem;

}

And now if I had three children to put onto that grid…

<div class="grid">

 <div></div>

 <div></div>

 <div></div>

</div>

They would fall onto that grid perfectly. That’s wonderfully easy, and offers us

a ton of control. That 1fr unit can be adjusted as needed. If the first one was

2fr instead, it would take up twice as much room as the other two. If it was

https://css-tricks.com/snippets/css/complete-guide-grid/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/

The Greatest CSS-Tricks - Volume I

16

200px, it would exactly that wide. The gap can be widened and narrowed.

There are all kinds of tools for alignment and explicit placement and ordering.

.grid {

 display: grid;

 gap: 1rem;

 grid-template-columns: 100px 1fr 2fr;

}

Let’s think about something else though for a moment. Say there were only 2

children. Well, they would automatically land in the 1st and 2nd columns, if we

weren’t otherwise explicit about where we wanted them to go. Say there were 5

children. Well, the 4th and 5th would move down onto a new row

automatically. Yes, rows! Our grid so far has totally ignored rows, they are just

implied. There is something intuitive about that. You don’t have to care about

rows, they can be automatically created. You can be explicit about them, but

you don’t have to be.

Here’s the CSS trick: we can extend that “don’t have to care” fun to columns in

addition to rows.

One way to do that is by…

Chapter 3 Flexible Grids

17

���Not setting any grid-template-columns

���Change the auto-flow away from the default rows to grid-auto-flow:

column;

Now there will be as many columns as there are child elements! Plus you can

still use gap, which is nice.

.grid {

 display: grid;

 gap: 1rem;

 grid-auto-flow: column;

 margin: 0 0 1rem 0;

}

.grid > div {

 height: 100px;

 background: red;

 min-width: 10px;

}

<div class="grid">

 <div></div>

 <div></div>

</div>

<div class="grid">

 <div></div>

 <div></div>

 <div></div>

</div>

<div class="grid">

 <div></div>

 <div></div>

 <div></div>

 <div></div>

 <div></div>

</div>

The Greatest CSS-Tricks - Volume I

18

But what we’ve lost here is wrapping. It would be nice if the number of columns

were based on how many elements could fit without breaking the width of the

parent, then doing that for the rest of the grid.

That leads us to perhaps the most famous and useful code in all of CSS grid:

.grid {

 display: grid;

 gap: 1rem;

 grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));

}

There is also an auto-fill keyword and they are a bit different, as Sara

Soueidan explains.

See how the number of columns adjusts depending on the available width:

https://css-tricks.com/auto-sizing-columns-css-grid-auto-fill-vs-auto-fit/

Chapter 3 Flexible Grids

19

Also note that the minimum value used here is 200px for each column. That’s

just some number that you’d pick that feels good for your content. If that

number was, say, 400px instead, you might consider an alteration that allows it

to go smaller if the screen itself is smaller than that wide. I first saw this trick

from Evan Minto:

grid-template-columns: repeat(auto-fill, minmax(min(10rem, 100%),

1fr));

The Greatest CSS-Tricks - Volume I

20

That’s saying that if 100% width calculates to less than 10rem (otherwise the

minimum), then use that instead, making it safer for small-screen layouts.

Chapter 4 Border Triangles

21

Chapter 4 Border Triangles

Imagine an element with a thick border:

.triangle {

 width: 200px;

 height: 200px;

 border: 10px solid black;

}

Now imagine all four borders have different colors:

The Greatest CSS-Tricks - Volume I

22

.triangle {

 ...

 border-left-color: red;

 border-right-color: yellowgreen;

 border-top-color: orange;

 border-bottom-color: rebeccapurple;

}

Notice how the borders meet each other at angles?

Look what happens when we collapse the element to zero width and height:

.triangle {

 ...

 width: 0;

 height: 0;

}

Chapter 4 Border Triangles

23

If three of those borders were transparent, we’d have a triangle!

.triangle {

 ...

 border-left-color: transparent;

 border-right-color: transparent;

 border-top-color: transparent;

 border-bottom-color: rebeccapurple;

}

Nice.

This could be useful on something like a pointing bubble of text. In that case,

you could add the triangle to another element via a pseudo-element. Here’s a

complete example:

https://codepen.io/chriscoyier/pen/OmORqR/

The Greatest CSS-Tricks - Volume I

24

Chapter 5 Scroll Indicator

25

Chapter 5 Scroll Indicator

There is a built-in browser feature for indicating your scroll position. Get this:

it’s the scrollbar, and it does a great job. There is even a standardized way to

style scrollbars these days.

body {

 --scrollbarBG: #CFD8DC;

 --thumbBG: #90A4AE;

 scrollbar-width: thin;

 scrollbar-color: var(--thumbBG) var(--scrollbarBG);

}

You might want to combine those with -webkit- styles for the best browser

support. For example:

https://css-tricks.com/the-current-state-of-styling-scrollbars/

The Greatest CSS-Tricks - Volume I

26

html {

 --scrollbarBG: #CFD8DC;

 --thumbBG: #90A4AE;

}

body::-webkit-scrollbar {

 width: 11px;

}

body {

 scrollbar-width: thin;

 scrollbar-color: var(--thumbBG) var(--scrollbarBG);

}

body::-webkit-scrollbar-track {

 background: var(--scrollbarBG);

}

body::-webkit-scrollbar-thumb {

 background-color: var(--thumbBG) ;

 border-radius: 6px;

 border: 3px solid var(--scrollbarBG);

}

Chapter 5 Scroll Indicator

27

But let’s say you weren’t as interested in styling the scrollbar as you were

building your own indicator to show the user how far down they’ve scrolled.

Like a progress bar that fills up as you approach the end of reading an article.

Mike Riethmuller found a way to do it that is extraordinarily clever!

It’s not only clever but is done with remarkably little code. To understand, let’s

remove the white backgrounds on the header and the pseudo-element on the

body revealing the linear-gradient used.

The Greatest CSS-Tricks - Volume I

28

Ah ha! A diagonal gradient drawn with a hard stop. We can already see what’s

happening here. As the page is scrolled down, the bit of this gradient that you

can see becomes more and more filled with blue. The trick then becomes

hiding everything but a small strip of this gradient, hence the solid

backgrounds on the header and the pseudo-element, placed a few pixels apart.

Chapter 5 Scroll Indicator

29

Perhaps the most clever bit is how the gradient background is sized. You might

think it just covers the entire background, but no. If you did that, the scrollbar

would never complete because it is at the top of the page and the gradient

completes at the bottom of the page. Because of this demos mid-page

placement, the gradient needs to complete almost a full viewport-height short

of the bottom. That would looke like:

background-size: 100% calc(100% - 100vh);

Except the fixed header size factors in a well, so that needs to be subtracted. In

the end, the code appears as if it has quite a few magic numbers in it. But they

The Greatest CSS-Tricks - Volume I

30

aren’t quite magical as most of them are related to each other genetically.

Here’s a fork that turns them all into custom properties so you can see that.

https://codepen.io/chriscoyier/pen/MWwGaVG

Chapter 5 Scroll Indicator

31

html {

 --header-size: 125px;

 --scrollbar-height: 3px;

 --scrollbar-bg: #ddd;

 --scrollbar-progress-color: #0089f2;

}

header {

 position: fixed;

 top: 0;

 height: var(--header-size);

 width: 100%;

 background: white;

 padding: 1rem 2rem;

}

main {

 margin-top: calc(var(--header-size) + var(--scrollbar-height));

 padding: 2rem;

}

body {

 background: linear-gradient(

 to right top,

 var(--scrollbar-progress-color) 50%,

 var(--scrollbar-bg) 50%

);

 background-size: 100%

 calc(100% - 100vh + var(--header-size) + var(--scrollbar-height) +

1px);

 background-repeat: no-repeat;

 margin: 0;

 font-family: "Open Sans", sans-serif;

}

body::before {

 content: "";

 position: fixed;

 top: calc(var(--header-size) + var(--scrollbar-height));

 bottom: 0; width: 100%;

 z-index: -1;

 background: white;

}

The Greatest CSS-Tricks - Volume I

32

Why do this?

It’s kinda fun.

Some browsers don’t have scrollbars at all (think mobile, and “Scroll

scrollbars only when scrolling” setting on macOS).

If you want to do something really fancy, like display the percentage of how far

you’ve scrolled through the page, or even fancier like showing an estimated

reading time that is programmatically calculated, well, that’s all doable, but

you’re in JavaScript territory.

https://css-tricks.com/reading-position-indicator/

Chapter 6 Boxy Buttons

33

Chapter 6 Boxy Buttons

We’re going to get to these “boxy buttons,” but we’re ultimately going to use

box-shadow to make them, so let’s take a quick box-shadow journey.

The basic use cause for box-shadow is giving an element the appearance of

three-dimensionality by applying a shadow underneath it as if it’s been li�ted

off the surface.

The slight shadows applied to those white boxes are done by:

The Greatest CSS-Tricks - Volume I

34

.module {

 box-shadow: 0 1px 3px rgba(0, 0, 0, 0.2);

}

Which is to say:

���Make an exact copy of the shape this element (respecting the border-

radius, for instance) and put it underneath the element

���Offset it by 0 horizontally and 1px (down) vertically

���Blur it by 3px. There is an optional parameter a�ter the blur called spread

which allows you do expand or contract the shadow, which defaults to 0

(doing neither).

���The background of it will be black with 0.2 opacity

That’s so basic though. C’mon. We can get weirder than that. Consider:

���You can get extreme with those offsets.

���You don’t have to blur the shadow at all.

���The colors don’t have to be subtle.

And most importantly:

���You can apply multiple shadows

Here are three differently offset shadows with no blur:

https://codepen.io/chriscoyier/pen/NWqYyLN

Chapter 6 Boxy Buttons

35

.module {

 width: 100px;

 height: 100px;

 background: white;

 box-shadow:

 5px 5px 0 #FF9800,

 10px 10px 0 #FFC107,

 15px 15px 0 #607D8B;

}

We could push those offsets further, making the “shadows” entirely separated

from the element:

https://codepen.io/chriscoyier/pen/abOYqRG

The Greatest CSS-Tricks - Volume I

36

.module {

 width: 50px;

 height: 50px;

 background: white;

 box-shadow:

 55px 55px 0 #FF9800,

 110px 110px 0 #FFC107,

 165px 165px 0 #607D8B;

}

So now that we know we have the ability to have unlimited shadows of any size

that can be placed anywhere… we can draw pixel art! All with a single element!

Here’s a burger, fries, and shake done by Marcus Connor:

https://codepen.io/marcusconnor/pen/ZKKapv

Chapter 6 Boxy Buttons

37

Steve Jobs as done by Codrin Pavel:

Or how about the Mona Lisa done with about 7,500 shadows, by Jay Salvat:

https://codepen.io/zerospree/pen/tFvCw
https://codepen.io/jaysalvat/pen/HaqBf

The Greatest CSS-Tricks - Volume I

38

On a slightly more practical level, you can layer box-shadow to simulate three-

dimensionality and directional shadows. Boxy buttons!

The trick is that we use zero-blur shadows laying them on top of each other. If

we do that 1 pixel at a time and alternate sides as we do it, they way the

shadows stack on top of each other gives us an opportunity to create a 3D box

look. Here are the basics:

Chapter 6 Boxy Buttons

39

.boxy-button {

 --bottom-color: #999;

 --right-color: #ddd;

 box-shadow:

 1px 0 0 var(--right-color),

 1px 1px 0 var(--bottom-color),

 2px 1px 0 var(--right-color),

 2px 2px 0 var(--bottom-color),

 3px 2px 0 var(--right-color),

 3px 3px 0 var(--bottom-color),

 4px 3px 0 var(--right-color),

 4px 4px 0 var(--bottom-color);

}

Keep going with that, and we can make a very boxy button indeed.

Toss some transitions on there and we can even make it feel very pressable:

The Greatest CSS-Tricks - Volume I

40

button {

 font-family: Roboto, sans-serif;

 padding: 1rem 2rem;

 font-size: 2rem;

 border: 0;

 color: #333;

 --top-color: #ccc;

 --bottom-color: #999;

 --right-color: #ddd;

 background: var(--top-color);

 transition: box-shadow 0.2s, transform 0.15s;

 box-shadow: 1px 0 0 var(--right-color), 1px 1px 0 var(--bottom-

color), 2px 1px 0 var(--right-color), 2px 2px 0 var(--bottom-color),

3px 2px 0 var(--right-color), 3px 3px 0 var(--bottom-color), 4px 3px 0

var(--right-color), 4px 4px 0 var(--bottom-color), 5px 4px 0 var(--

right-color), 5px 5px 0 var(--bottom-color), 6px 5px 0 var(--right-

color), 6px 6px 0 var(--bottom-color), 7px 6px 0 var(--right-color),

7px 7px 0 var(--bottom-color), 8px 7px 0 var(--right-color), 8px 8px 0

var(--bottom-color), -5px 20px 40px -8px #999;

}

button:focus, button:hover {

 outline: 0;

 box-shadow: 1px 0 0 var(--right-color), 1px 1px 0 var(--bottom-

color), 2px 1px 0 var(--right-color), 2px 2px 0 var(--bottom-color),

3px 2px 0 var(--right-color), 3px 3px 0 var(--bottom-color), 4px 3px 0

var(--right-color), 4px 4px 0 var(--bottom-color), -5px 5px 12px -8px

#999;

 transform: translate(3px, 3px);

}

button:active {

 outline: 0;

 box-shadow: 1px 0 0 var(--right-color), 1px 1px 0 var(--bottom-

color);

 transform: translate(5px, 5px);

}

Chapter 6 Boxy Buttons

41

We could use the one-line-at-a-time shadow technique for the “outer” shadow

as well, faking the gradient by reducing the opacity of the shadow a bit each

time. That makes more a directional shadow look that can be cool.

Here’s an example where the direction goes the other way (thanks to negative

box-shadow offsets) and uses the directional shadows.

That’s an awful lot of code for a fun button, but aren’t buttons worth it? With a

good bit less code, we can get another pretty fun offset look, only this time

using some inset box-shadow trickery and little pseudo-elements to fake the

continued border look.

The Greatest CSS-Tricks - Volume I

42

button {

 background: none;

 border: 5px solid black;

 padding: 1.5rem 3rem;

 box-shadow: 5px 5px red, 10px 10px black, inset 5px 5px white, inset

10px 10px black;

 font-family: -system-ui, sans-serif;

 font-weight: bold;

 font-size: 2rem;

 position: relative;

}

button::before, button::after {

 content: "";

 position: absolute;

 background: black;

}

button::before {

 top: 100%;

 left: 5px;

 height: 10px;

 width: 5px;

}

button::after {

 left: 100%;

 top: 5px;

 height: 5px;

 width: 10px;

}

Chapter 7 Self-Drawing Shapes

43

Chapter 7 Self-Drawing Shapes

The best shape-drawing tool we have on the web is SVG, and in particular the

<path d="" /> element. With the path syntax, you can draw anything you

want with its commands for drawing straight and curved lines. A path can be a

solid shape, but for our purposes here, let’s assume the path is fill: none;

and we’ll focus on the stroke of the path and having that path draw itself.

Let’s say we have a single <path /> that draws a cool shape like this:

In our SVG, we’ll make sure we’ve set up that path nicely like this:

https://css-tricks.com/svg-path-syntax-illustrated-guide/

The Greatest CSS-Tricks - Volume I

44

<path

 pathLength="1"

 stroke="black"

 stroke-width="5"

 fill="none"

 d="..."

/>

That second line is going to make this trick very easy to pull off, as you’ll see in

a moment.

The trick itself, making the shape “draw itsel�” comes from the idea that

strokes can be dashed, and you can control the length and offset of the dashing. So

imagine this: you make the dash (and space a�ter the dash) so long that it

covers the entire shape, so it appears as if didn’t dash the stroke at all. But then

you offset the stroke that far again so that it looks like there is no stroke at all.

Then here’s the key: animate the offset so it looks like the shape is drawing

itself.

That’s why pathLength="1" is so useful. We’re just animating offset from 1 to

0 which is easy as pie in CSS:

Chapter 7 Self-Drawing Shapes

45

path {

 stroke-dasharray: 1;

 stroke-dashoffset: 1;

 animation: dash 5s linear forwards;

}

@keyframes dash {

 from {

 stroke-dashoffset: 1;

 }

 to {

 stroke-dashoffset: 0;

 }

}

That CSS above will work on any stroked path, assuming you’re using the

pathLength trick!

The Greatest CSS-Tricks - Volume I

46

One little problem: Safari. Safari doesn’t like the pathLength attribute on the

path, so the easy 1-to-0 trick fails. It’s salvageable though. First, we need to

Chapter 7 Self-Drawing Shapes

47

figure out the natural length of the path (rather than forcing it to be 1). We can

do that by selecting it in the DOM and:

path.getTotalLength();

In our example above, the length is 8085. So rather than 1, we’ll use that value

in our CSS.

path {

 stroke-dasharray: 8085;

 stroke-dashoffset: 8085;

 animation: dash 5s ease-in-out infinite alternate;

}

@keyframes dash {

 from {

 stroke-dashoffset: 8085;

 }

 to {

 stroke-dashoffset: 0;

 }

}

Here’s a fork of the example with that in place, which will work across all

browsers. Here’s hoping Safari makes pathLength work though, as it’s far

easier to not have to measure path length.

More

https://codepen.io/chriscoyier/pen/QWbmeYR?editors=1100

The Greatest CSS-Tricks - Volume I

48

If it would be helpful for you to see a step-by-step look at how this line

drawing stuff works, we’ve got that including a video walkthrough version.

Here’s another neat idea: have the shape draw itself based on scroll

position.

https://css-tricks.com/svg-line-animation-works/
https://css-tricks.com/lodge/svg/28-svg-line-drawing-works/
https://css-tricks.com/scroll-drawing/

Chapter 8 Perfect Font Fallbacks

49

Chapter 8 Perfect Font Fallbacks

When you load custom fonts on the web, a responsible way to do that is to

make sure the @font-face declaration uses the property font-display set

to a value like swap or optional.

@font-face {

 font-family: 'MyWebFont'; /* Define the custom font name */

 src: url('myfont.woff2') format('woff2'); /* Define where the font

can be downloaded */

 font-display: swap; /* Define how the browser behaves during download

*/

}

With that in place, there will be no delay for a user loading your page before

they see text. That’s great for performance. But it comes with a design tradeoff,

the user will see FOUT or “Flash of Unstyled Text”. Meaning they’ll see the

page load with one font, the font will load, then the page will flip out that font

for the new one, causing a bit of visual disruption and likely a bit of reflow.

This trick is about minimizing that disruption and reflow!

This trick comes by way of Glen Maddern who published a screencast about

this at Front End Center who uses Monica Dinculescu’s Font style matcher

combined with Bram Stein’s Font Face Observer library.

https://css-tricks.com/snippets/css/using-font-face/
https://css-tricks.com/almanac/properties/f/font-display/
https://twitter.com/glenmaddern
https://frontend.center/ep8-crafting-webfont-fallbacks
https://meowni.ca/font-style-matcher/
https://github.com/bramstein/fontfaceobserver

The Greatest CSS-Tricks - Volume I

50

Let’s say you load up a font from Google Fonts. Here I’ll use Rubik in two

weights:

@import url("https://fonts.googleapis.com/css2?

family=Rubik:wght@400;900&display=swap");

At the end of that URL, by default, you’ll see &display=swap which is how

they make sure font-display: swap; is in the @font-face declaration.

On a slow connection, this is how a simple page with text will load:

Before the page’s first paint.

https://fonts.google.com/specimen/Rubik?selection.family=Rubik:wght@400;900&sidebar.open

Chapter 8 Perfect Font Fallbacks

51

Page will paint with fallback fonts

while the custom font loads. font-

display: swap has an “extremely

small block period”, so unless the

font is in the browser cache, you’ll

almost certainly see the swap

happen (FOUT).

Once the custom font loads, the page

will repaint, causing reflow and

visually jerkiness. Unless we fix it!

Let’s fix that.

Using Font style matcher tool, we can lay the two fonts on top of each other

and see how different Rubik and the fallback font are.

https://meowni.ca/font-style-matcher/

The Greatest CSS-Tricks - Volume I

52

Note I’m using system-ui as the fallback font here. You’ll want to use a classic

“web-safe” font for a fallback, like Georgia, Times New Roman, Arial, Tahoma,

Verdana, etc. The vast majority of computers have those installed by default so

they are safe fallbacks.

In our case, these two fonts have a pretty much identical “x-height” already

(note the height of the red and black lowercase letters above). If they didn’t,

we’d end up having to tweak the font-size and line-height to match. But

thankfully for us, just a tweak to letter-spacing will get them very close.

Chapter 8 Perfect Font Fallbacks

53

Adjusting the callback to using letter-spacing: 0.55px; gets them sizing

very close!

Now the trick is to give ourselves the ability apply this styling only before the

font loads. So let’s make it the default style, then have a body class that tells us

the font is loaded and remove the alterations:

body {

 font-family: "Rubik", system-ui, sans-serif;

 letter-spacing: 0.55px;

}

body.font-loaded {

 letter-spacing: 0px;

}

But how do you get that font-loaded class? The Font Face Observer library

makes it very easy and cross-browser friendly. With that library in place, it’s a

few lines of JavaScript to adjust the class:

https://github.com/bramstein/fontfaceobserver

The Greatest CSS-Tricks - Volume I

54

const font = new FontFaceObserver("Rubik", {

 weight: 400

});

font.load().then(function() {

 document.body.classList.add("font-loaded");

});

Now see how much smoother and less disruptive the font loading experience

is:

Chapter 8 Perfect Font Fallbacks

55

This is the first-paint and a�ter-font-loaded states on top of each other. In the

header you can see the green-tinted/font-loaded header moves quite a bit. We

could fix that. But more importantly the body copy doesn’t reflow all that much

at all. It causes a little noticeable swap, but all the lines and placement remain

the same so nobody will lose their place.

That’s a really great trick!

When testing, if you can’t see the swap happen at all, check and make sure you

don’t have Rubik installed on your machine already. Or your internet might be

just too fast! DevTools can help throttle your connection to be slower for

testing:

This can get more intricate as you use multiple fonts and multiple weights of

fonts. You can watch for the loading of each one and adjust different classes as

they load in, adjusting styles to make sure things reflow as little as possible.

The Greatest CSS-Tricks - Volume I

56

Chapter 9 Scroll Shadows

The idea of scroll shadows makes an absolute ton of sense. When a container is

scrolled down, you can see a shadow at the top, which makes it clear you can

scroll back up. And if it’s possible to scroll down, there is a shadow down there

also, unless you’ve scrolled down all the way.

This might just be my favorite CSS trick of all time. The idea comes by way of

Roman Komarov, but then Lea Verou came up with the extra fancy CSS

trickery and popularized it.

Scroll shadows are such nice UX, it almost makes you wonder why it’s not a

native browser feature, or at least easier to pull off in CSS. You could call them

an affordance, an obvious visual cue that scrolling is either possible or

complete, that doesn’t require any learning.

Here’s what it looks like. When you can scroll down, there is a shadow there

that makes it look like you can. When you can scroll both ways, there are

shadows on both top and bottom. When you can only scroll up, the shadow is

only on top.

http://lea.verou.me/2012/04/background-attachment-local/

Chapter 9 Scroll Shadows

57

It’s a bit of a mind-bender understanding how it works, in part because it uses

background-attachment: local; which is a rare thing to use, to say the

least. Here’s an attempt:

���There are two types of shadows at work here:

���Regular shadows

���Cover shadows

���All of the shadows are created with background gradients. For example, a

non-repeatingradial-gradient sized and placed at the center top of the

element to look like a shadow.

���The cover shadows are placed on top of those regular shadows, by way of

the stacking order of multiple backgrounds, and capable of entirely hiding

them.

���The regular shadows use the default value of background-attachment,

which is scroll, which you’ll be familiar with because it’s the way

backgrounds normally work in that you don’t really think about it. The

backgrounds are just there, positioned in the visible portion of the

element, and don’t move around as the element scrolls.

���The overflow shadows us the unusual background-attachment:

local; which places them at the top and bottom edges of the element

The Greatest CSS-Tricks - Volume I

58

factoring in the entire scroll height of the element. They move as the

elements scroll position moves.

So imagine this scenario: the element overflows vertically, and it is currently all

the way scrolled to the top. Both the top shadow and the top shadow cover are

at the top of the element. The cover is on top, hiding the shadow like it’s not

there at all. Scroll down a little, and the cover sticks to the very top of the

element, now hidden by overflow, so you can’t see the cover anymore and the

shadow reveals itself. At the bottom, you’ve been able to see the shadow the

whole time because the cover is stuck to the very bottom of the element and

the shadow is stuck to the bottom of the visible area. Scroll all the way to the

bottom and the cover will overlap the bottom shadow, hiding it. That’s a

mouthful, but it all works!

The beauty of it is how it’s just a few lines of code you can apply to a single

element to get it done.

Chapter 9 Scroll Shadows

59

.scroll-shadows {

 max-height: 200px;

 overflow: auto;

 background:

 /* Shadow Cover TOP */

 linear-gradient(

 white 30%,

 rgba(255, 255, 255, 0)

) center top,

 /* Shadow Cover BOTTOM */

 linear-gradient(

 rgba(255, 255, 255, 0),

 white 70%

) center bottom,

 /* Shadow TOP */

 radial-gradient(

 farthest-side at 50% 0,

 rgba(0, 0, 0, 0.2),

 rgba(0, 0, 0, 0)

) center top,

 /* Shadow BOTTOM */

 radial-gradient(

 farthest-side at 50% 100%,

 rgba(0, 0, 0, 0.2),

 rgba(0, 0, 0, 0)

) center bottom;

 background-repeat: no-repeat;

 background-size: 100% 40px, 100% 40px, 100% 14px, 100% 14px;

 background-attachment: local, local, scroll, scroll;

}

It doesn’t have to work on only white backgrounds either, but it does need to be

a flat color.

The Greatest CSS-Tricks - Volume I

60

This can be much more than just a UI/UX nicety, it can be vital for indicating

when a container has more stuff in it that can be scrolled to in a situation

where the container doesn’t have a scrollbar or any other UI to indicate it can

be scrolled. Consider the story Perfectly Cropped from Tyler Hall in which

shares how confused his family members are about the sharing panel in iOS 13.

It’s entirely not obvious that you can scroll down here in this screenshot.

Other Tricks

Perhaps the shadow could be bigger or stronger depending on how much there

is to scroll?

Hakim El Hattab once tweeted an example of this that did a great job of

demonstrating.

See the shadows along the le�t sidebar here:

https://tyler.io/perfectly-cropped/
https://css-tricks.com/wp-content/uploads/2020/03/sharesheet-1-1.png
https://twitter.com/hakimel/status/685057803396988928

Chapter 9 Scroll Shadows

61

Heavy bottom shadow indicating there is a good amount of content there to scroll to.

The Greatest CSS-Tricks - Volume I

62

Shadow along the bottom gets lighter as there is only a little bit le�t to scroll to. Medium

shadow appears along the top.

Chapter 9 Scroll Shadows

63

Note that that demo uses a bit of JavaScript to do its thing. Of course, I’m

attracted to the CSS-only version, particularly here as it is so easy to apply to a

single element. But there are lots of takes of this with JavaScript, like:

This one that inserts and fades the shadows in and out as needed

This one using React Hooks

This one using the Intersection Observer API

No more shadow along the bottom as there is no more to scroll. Heavy shadow along the top.

https://codepen.io/shadeed/pen/jWBjVd
https://codepen.io/mindstorm/pen/EbiyJ
https://codesandbox.io/s/dawn-sunset-uhbtu?fontsize=14
https://destroytoday.com/blog/overflow-shadows-using-the-intersection-observer-api

The Greatest CSS-Tricks - Volume I

64

Despite my attraction to only doing this in CSS, there is another reason you

might want to reach for a JavaScript-powered solution instead: iOS Safari. Back

in June 2019, when iOS 13 shipped, the version of Safari in that (and every

version since), this technique fails to work on. I’m actually not 100% sure why.

It seems like a bug. It broke at the same time clever CSS-powered parallax

broke on iOS Safari. It may have something to do with how they “cache” certain

painted layers of sites. It sure would be nice if they would fix it.

https://css-tricks.com/ios-13-broke-the-classic-pure-css-parallax-technique/

Chapter 10 Editable Style Blocks

65

Chapter 10 Editable Style Blocks

When you see some HTML like:

<p>I'm going to display this text.</p>

That’s pretty intuitive. Like, the browser is going to display that paragraph

element of text.

But that paragraph exists in a larger HTML document, like:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <title>My Website</title>

</head>

<body>

 <p>I'm going to display this text.</p>

</body>

</html>

Why doesn’t “My Website” also display like the paragraph does? What’s so

different about <title> and <p>. Well, that’s the nature of any code. Different

things do different things. But in this case, we can trace why it doesn’t display

pretty easily.

The Greatest CSS-Tricks - Volume I

66

If we open this HTML document in a browser an inspect that <title>

element, it will show us that the User Agent Stylesheet sets that element to

display: none; Well that makes sense! That’s exactly what we use when we

want to hide things entirely from sites.

What’s more, the <title> elements parent element, <head>, is also display:

none;.

This is where it gets funny.

User Agent styles are very easy to override! Any value that comes from our CSS

will override it. So let’s try this:

<style>

 head, title {

 display: block;

 }

</style>

Chapter 10 Editable Style Blocks

67

LOLZ, there it is! Just like a paragraph:

And we have just as much control over it as anything else, meaning we can

apply perfect styling to it:

The Greatest CSS-Tricks - Volume I

68

And this can get even weirder… See that <style> block that is also in the

<head>, we can’t see that for the exact same reason we couldn’t see the

<title>, it’s display: none;. We can change that to make it visible also.

While we’re at it, we can make it look like it does in our code editor too by

having it respect whitespace and use a monospace font:

head, title, style {

 display: block;

}

style {

 font-family: monospace;

 white-space: pre;

}

Ha! What the heck!

Chapter 10 Editable Style Blocks

69

Now we can get one more step weirder. That style block? It can become

editable, because that’s a thing any HTML element can do thanks to the

contenteditable attribute.

<style contenteditable>

 ...

</style>

Now that visible <style> block can be edited just like it was a <textarea>,

and the CSS applies immediately to the document.

Definitely one of the weirdest things HTML and CSS are capable of.

You might call this a CSS Quine (“a self-referential program that can, without

any external access, output its own source.”). Alex Sexton published an

https://github.com/SlexAxton/CSSCSS/blob/gh-pages/index.html

The Greatest CSS-Tricks - Volume I

70

example of this in 2013 and credits Anne van Kesteren and Mathias Bynens as

prior art. I’ve seen Lea Verou use it to do live coding in conference talks!

https://github.com/SlexAxton/CSSCSS/blob/gh-pages/index.html

Chapter 11 Draggable Elements

71

Chapter 11 Draggable Elements

Just to be clear, even when we pull this off in HTML and CSS, all we’re getting

done is making the element draggable around the screen. If you actually need

to do something as a result of that dragging, your back in JavaScript territory.

This trick comes by way of Scott Kellum. Scott has done a number of my

absolute favorite CSS tricks over the years, like this super simple @keyframes

setup that bounces an element off the viewport edges like an old school

screensaver, to an impressive Sass-powered parallax technique.

There really just one CSS thing that can help us with click-and-drag, and that’s

the browser UI we get on desktop browsers when we use the resize property.

Here’s a <div> where we use it (along with overflow: hidden; which is a

prereq for it to work):

https://scottkellum.com/
https://codepen.io/scottkellum/pen/BoZvjR
https://codepen.io/scottkellum/pen/bHEcA

The Greatest CSS-Tricks - Volume I

72

If you’re looking at the demo a desktop browser, you’ll be able to grab the

bottom right corner of that and drag it around.

Now here’s the real trick.

We can put that resizeable element into another container. That container will

grow in height naturally as the resizeable element changes height. It will

change it width naturally because of width: min-content;.

Now we have a parent element that resizes along with the resizeable element.

That matters because we can put other stuff in that parent element that moves

https://codepen.io/chriscoyier/pen/ZEbWKde

Chapter 11 Draggable Elements

73

along with it. I’ll drop a big ol’ ✖ in there and position it right on top of the

resizer, with pointer-events: none; on it so I can still do the resizing:

Now if we make sure the resizing element is hidden via opacity: 0; it

appears as if we’ve made a draggable element out of nowhere! We might need

to jiggle the numbers a bit to get things lining up, but it’s doable:

If we put pointer-events: none; on that SVG ×, the resizing handle is still fully

functional.

https://codepen.io/chriscoyier/pen/xxwVrGW

The Greatest CSS-Tricks - Volume I

74

Chapter 12 Hard Stop Gradients

75

Chapter 12 Hard Stop Gradients

Here’s an example of “traditional” gradients where colors slowly fade from one

to another.

There is a concept called color-stops with gradients that allow you to control

the position of where colors start transitioning from one to the next. Here’s an

example where the first color hangs on for most of the way:

These are all created with CSS gradients.

https://codepen.io/sedlukha/pen/JXrLKX

The Greatest CSS-Tricks - Volume I

76

.stripe {

 height: 100px;

 background: linear-gradient(to right, red 85%, blue);

}

Here’s the trick: the color stops can get closer and closer to each other, and

actually be at the same point. Meaning that instead of the color transitioning at

all, one color stops and the other color can start at an exact point. Here’s a

visual explanation of converging color stops:

The bottom example there almost looks like it’s two separate elements with

two separate backgrounds, but nope, it’s a single element with hard-stop

gradients splitting the space visually. If you needed to make vertical columns

and handle their backgrounds all on one parent element, this is a possibility! In

Chapter 12 Hard Stop Gradients

77

fact, because the background will cover the whole area, you don’t have to

worry about the elements “stretching” the full height, which made this a great

trick when we needed to make columns based on floats or inline-block

elements.

Extending the concept of hard stops, we can make a color-striped bar. Here are

variations of it made by moving the background-position.

.stripe {

 height: 15px;

 background: linear-gradient(

 to right,

 red,

 red 20%,

 orange 20%,

 orange 40%,

 yellowgreen 40%,

 yellowgreen 60%,

 lightblue 60%,

 lightblue 80%,

 purple 80%,

 purple

);

 margin: 0 0 20px 0;

}

.stripe:nth-child(2) {

 background-position-x: -10vw;

}

.stripe:nth-child(3) {

 background-position-x: -20vw;

}

The Greatest CSS-Tricks - Volume I

78

Speaking of stripes, these hard-stop gradients are great for striped

backgrounds of any kind. It gets a little easier with repeating gradients (e.g.

repeating-linear-gradient()) as you don’t have to fill 100% of the space,

you can use pixels and stop where you need to.

.stripes {

 background-color: #ffd600;

 background-image: repeating-

linear-gradient(

 45deg,

 transparent,

 transparent 9px,

 #f4ff81 9px,

 #f4ff81 10px

);

}

.stripes {

 background-color: #cfd8dc;

 background-image: repeating-

linear-gradient(

 45deg,

 transparent,

 transparent 1px,

 #90a4ae 1px,

 #90a4ae 2px

);

}

Chapter 12 Hard Stop Gradients

79

.stripes {

 background-color: #e53935;

 background-image: repeating-

linear-gradient(

 10deg,

 transparent,

 transparent 20px,

 #c62828 20px,

 #c62828 23px

);

}

.stripes {

 background-color: #689f38;

 background-image: repeating-

linear-gradient(

 -25deg,

 transparent,

 transparent 40px,

 #aed581 40px,

 #aed581 50px

);

}

.stripes {

 background-image: repeating-linear-gradient(

 90deg,

 rgba(224, 82, 67, 0.5) 0px,

 rgba(224, 82, 67, 0.5) 40px,

 transparent 40px,

 transparent 80px

),

 repeating-linear-gradient(

 0deg,

The Greatest CSS-Tricks - Volume I

80

rgba(224,82,67,0.5)0px,rgba(224,82,67,0.5)40px,

 transparent 40px,

 transparent

80px),linear-

gradient(90deg,hsl(250,82%,1%),hsl(250,82%,1%));}

.stripes {

 background-image: repeating-

linear-gradient(

 45deg,

 hsla(312, 0%, 63%, 0.05)

0px,

 hsla(312, 0%, 63%, 0.05)

10px,

 transparent 10px,

 transparent 100px

),

 repeating-linear-gradient(

 90deg,

 hsla(312, 0%, 63%, 0.05)

0px,

 hsla(312, 0%, 63%, 0.05)

50px,

 transparent 50px,

 transparent 100px

),

 linear-gradient(90deg,

hsl(80, 0%, 20%), hsl(80, 0%,

20%));

}

There are other types of gradients as well! We can use hard-stops with

radial-gradient and repeating-linear-gradient as well!

Chapter 12 Hard Stop Gradients

81

.stripes {

 background: repeating-

radial-gradient(

 circle at 100%,

 #333,

 #333 10px,

 #999 10px,

 #999 20px

);

}

.stripes {

 background-image: radial-

gradient(#90caf9 20%,

transparent 20%),

 radial-gradient(#1e88e5

20%, transparent 20%);

 background-color: #64b5f6;

 background-position: top

left, 50px 50px;

 background-size: 100px

100px;

}

.stripes {

 background-image: radial-gradient(

 circle at top left,

 #ec407a,

 #ec407a 20%,

 #7e57c2 20%,

 #7e57c2 40%,

 #42a5f5 40%,

 #42a5f5 60%,

 #26a69a 60%,

 #26a69a 80%,

 #9ccc65 80%

The Greatest CSS-Tricks - Volume I

82

);}

.stripes {

 background: repeating-

radial-gradient(

 circle at bottom right,

 #eee,

 #ccc 50px

);

}

Notice in that last example, you still see some color fading stuff going on. A

hard-stop gradient doesn’t have to be used exclusively. That one has just one

hard stop that repeats.

Conical gradients are another prime canidate for hard stop gradients, as when

applied into a circle (e.g. border-radius: 50%) they become instant pie

charts!

.chart {

 background: conic-gradient(

 #f15854 4%,

 #4d4d4d 0 8%,

 #5da5da 0 17%,

 #decf3f 0 48%,

Chapter 12 Hard Stop Gradients

83

#faa43a0);border-

radius:50%;height:0;padding-

top:100%;}

The Greatest CSS-Tricks - Volume I

84

Chapter 13 Squigglevision

Squigglevision a (real!) term for animation where the lines appear to squirm

around, even when the object/scene is at rest. It’s part of the iconic look of

shows like Dr. Katz, remember that?

Quite a unique look! It’s even patented. But the patent talks about five edited

images and displaying them in “rapid succession”. Wikipedia:

In order to create the line oscillation effects that characterize

Squigglevision, Tom Snyder Productions’ animators loop five slightly

different drawings in a sequence called a flic.

On the web, if we had to animate five (or more) images in rapid success, we’d

probably do it with a step()-based @keyframes animation and a sprite sheet.

Here’s a great example of that by simuari that shows exactly how it works, with

the sprite sheet on top (10 images combined into 1) and the animation below.

https://bit.ly/squigglevision-patent
https://en.wikipedia.org/wiki/Squigglevision

Chapter 13 Squigglevision

85

But that’s a lot of work! There is a way we can get the wiggle jiggle squiggle on

any element without having to hand-cra�t a bunch of individual images and

make bespoke keyframes of specialized sizes to make it work.

The trick?

Rapidly iterated SVG turbulence filters

Whaaaat? Yep, it’s so cool.

I learned this trick from David Khourshid who made a wonderful demo, Alex

the CSS Husky (look below), where the squiggling wasn’t even the main feature

of the demo! David says he got the trick from Lucas Bebber in another demo I’ll

embed below.

If you view this little dude one image at a time, it looks like he’s waving. Trust me.

https://codepen.io/davidkpiano/pen/wMqXea/
https://codepen.io/lbebber/pen/KwGEQv

The Greatest CSS-Tricks - Volume I

86

Here’s how a single SVG turbulence filter works. First, you declare it with some

inline <svg>:

See the slightly jagged edges on the shapes that make up Alex the Husky.

https://codepen.io/davidkpiano/pen/wMqXea/

Chapter 13 Squigglevision

87

<svg display="none">

 <defs>

 <filter id="turb">

 <feTurbulence baseFrequency="0.3" numOctaves="2" />

 <feDisplacementMap in="SourceGraphic" scale="20" />

 </filter>

 </defs>

</svg>

Then you can apply it to any HTML element like this:

.filter {

 filter: url("#turb");

}

Here’s a before/a�ter:

The Greatest CSS-Tricks - Volume I

88

That’s a pretty extreme amount of turbulence. Try cranking it down to

baseFrequency="0.003" and see a way more subtle version. Hmmm—almost

looks like a very slight squiggle, doesn’t it?

The trick is to use just a smidge, make several different ones, then

animate between them.

Here are five different turbulence filters, all slightly different from each other,

with different ID’s:

Chapter 13 Squigglevision

89

<svg>

 <filter id="turbulence-1">

 <feTurbulence type="fractalNoise" baseFrequency="0.001"

numOctaves="2" data-filterId="3" />

 <feDisplacementMap xChannelSelector="R" yChannelSelector="G"

in="SourceGraphic" scale="25" />

 </filter>

 <filter id="turbulence-2">

 <feTurbulence type="fractalNoise" baseFrequency="0.0015"

numOctaves="2" data-filterId="3" />

 <feDisplacementMap xChannelSelector="R" yChannelSelector="G"

in="SourceGraphic" scale="25" />

 </filter>

 <filter id="turbulence-3">

 <feTurbulence type="fractalNoise" baseFrequency="0.002"

numOctaves="2" data-filterId="3" />

 <feDisplacementMap xChannelSelector="R" yChannelSelector="G"

in="SourceGraphic" scale="25" />

 </filter>

 <filter id="turbulence-4">

 <feTurbulence type="fractalNoise" baseFrequency="0.0025"

numOctaves="2" data-filterId="3" />

 <feDisplacementMap xChannelSelector="R" yChannelSelector="G"

in="SourceGraphic" scale="25" />

 </filter>

 <filter id="turbulence-5">

 <feTurbulence type="fractalNoise" baseFrequency="0.003"

numOctaves="2" data-filterId="3" />

 <feDisplacementMap xChannelSelector="R" yChannelSelector="G"

in="SourceGraphic" scale="25" />

 </filter>

</svg>

And a CSS keyframes animation to animate between them:

The Greatest CSS-Tricks - Volume I

90

@keyframes squigglevision {

 0% {

 filter: url("#turbulence-1");

 }

 25% {

 filter: url("#turbulence-2");

 }

 50% {

 filter: url("#turbulence-3");

 }

 75% {

 filter: url("#turbulence-4");

 }

 100% {

 filter: url("#turbulence-5");

 }

}

Which you call on anything you wanna squiggle:

.squiggle {

 animation: squigglevision 0.4s infinite alternate;

}

You can see thejagged edges here, but it’s much more fun to view the live demo.

https://codepen.io/chriscoyier/pen/KVebWd

Chapter 13 Squigglevision

91

That’s pretty much exactly what’s happening with Alex the CSS Husky, only the

filters are even more chill.

Here’s Lucas’ original demo:

https://codepen.io/davidkpiano/pen/wMqXea?editors=1100
https://codepen.io/lbebber/pen/KwGEQv

The Greatest CSS-Tricks - Volume I

92

Chapter 14 Pin Scrolling to Bottom

The overflow-anchor property in CSS is relatively new, first debuting in 2017

with Chrome¹, Firefox in 2019, and now Edge picking it up with the Chrome

transition in 2020. Fortunately, its use is largely an enhancement. The idea is

that browsers really try to not to allow position shi�ting by default. Then if you

don’t like how it’s handling that, you can turn it off with overflow-anchor. So

generally, you never touch it.

But as you might suspect, we can exploit this little beauty for a little CSS

trickery. We can force a scrolling element to stay pinned down to the bottom

even as we append new content.

https://css-tricks.com/almanac/properties/o/overflow-anchor/
https://css-tricks.com/books/greatest-css-tricks/full-book-raw/#fn:1
https://blog.chromium.org/2017/04/scroll-anchoring-for-web-developers.html

Chapter 14 Pin Scrolling to Bottom

93

We expect this behavior in a UI like Slack, where if we’re scrolled down to the

most recent messages in a channel, when new messages arrive, they are visible

at the bottom immediately, we don’t have to manually re-scroll down to see

them.

This feature comes by way of Ryan Hunt who also credits Nicolas Chevobbe.

As Ryan says:

Chat is a classic example of pin-to-bottom scrolling.

https://blog.eqrion.net/pin-to-bottom/

The Greatest CSS-Tricks - Volume I

94

Have you ever tried implementing a scrollable element where new

content is being added and you want to pin the user to the bottom? It’s

not trivial to do correctly.

At a minimum, you’ll need to detect when new content is added with

JavaScript and force the scrolling element to the bottom. Here’s a technique

using MutationObserver in JavaScript to watch for new content and forcing

the scrolling:

const scrollingElement = document.getElementById("scroller");

const config = { childList: true };

const callback = function (mutationsList, observer) {

 for (let mutation of mutationsList) {

 if (mutation.type === "childList") {

 window.scrollTo(0, document.body.scrollHeight);

 }

 }

};

const observer = new MutationObserver(callback);

observer.observe(scrollingElement, config);

Here’s a demo of that.

https://codepen.io/chriscoyier/pen/bGENqxo

Chapter 14 Pin Scrolling to Bottom

95

But I find a CSS-only solution far more enticing! The version above has some

UX pitfalls we’ll cover later.

The trick here is that browsers already do scroll anchoring by default. But

what browsers are trying to do is not shi�t the page on you. So when new

content is added that might shi�t the visual position of the page, they try to

prevent that from happening. In this unusual circumstance, we sort of want the

opposite. We want the page to be stuck at the bottom of the page and have the

visual page visually move, because it is forced to to remain stuck to the bottom.

Here’s how the trick works. First some HTML within a scrolling parent

element:

The Greatest CSS-Tricks - Volume I

96

<div id="scroller">

 <!-- new content dynamically inserted here -->

 <div id="anchor"></div>

</div>

All elements naturally have a overflow-anchor: auto; on them which

means they attempt to prevent that page shi�ting when they are on the screen,

but we can turn that off with overflow-anchor: none;. So the trick is to

target all that dynamically inserted content and turn it off:

#scroller * {

 overflow-anchor: none;

}

Then force only that anchor element to have the scroll anchoring, nothing else:

#anchor {

 overflow-anchor: auto;

 height: 1px;

}

Now once that anchor is visible on the page, the browser will be forced to pin

that scroll position to it, and since it is the very last thing in that scrolling

element, remain pinned to the bottom.

Here we go!

https://codepen.io/chriscoyier/pen/bGbeBdp

Chapter 14 Pin Scrolling to Bottom

97

There are two little caveats here…

���Notice the anchor must have some size. We’re using height here to make

sure it’s not a collapsed/empty element with no size, which would prevent

this from working.

���In order for scroll anchoring to work, the page must be scrolled at least

once to begin with.

That second one is harder. One option is to not deal with it at all, you could just

wait for the user to scroll to the bottom, and the effect works from there on

out. It’s kind of nice actually, because if they scroll away from the bottom, the

effect stops working, which is what you want. In the JavaScript version

above, note how it forces you to the bottom even when you try to scroll

up, that’s what Ryan meant by this not being trivial to do correctly.

If you need the effect kicked off immediately, the trick is to have the scrolling

element be scrollable immediately, for example:

body {

 height: 100.001vh;

}

And then trigger a very slight scroll right away:

document.scrollingElement.scroll(0, 1);

The Greatest CSS-Tricks - Volume I

98

And that should do the trick. Those lines are available in the demo above to

uncomment and try.

���Speaking of Chrome, Google takes this layout shi�ting stuff very seriously.

One of the Web Core Vitals is Cumulative Layout Shi�t (CLS), which

measures visual stability. Get a bad CLS score, and it literally impacts your

SEO.

https://web.dev/vitals/

Chapter 15 Scroll Animation

99

Chapter 15 Scroll Animation

So let’s get that out of the way. With a JavaScript one-liner, we can set a CSS

custom property that knows the percentage of the page scrolled:

window.addEventListener('scroll', () => {

 document.body.style.setProperty('--scroll', window.pageYOffset /

(document.body.offsetHeight - window.innerHeight));

}, false);

Now we have --scroll as a value we can use in the CSS.

This trick comes by way of Scott Kellum who is quite the CSS trickery master!

Let’s set up an animation without using that value at first. This is a simple

spinning animation for an SVG element that will spin and spin forever:

svg {

 display: inline-block;

 animation: rotate 1s linear infinite;

}

@keyframes rotate {

 to {

 transform: rotate(360deg);

 }

}

https://codepen.io/scottkellum/pen/WWeXab
https://codepen.io/chriscoyier/pen/qBbrwBJ

The Greatest CSS-Tricks - Volume I

100

Here comes the trick! Now let’s pause this animation. Rather than animate it

over a time period, we’ll animate it via the scroll position by adjusting the

animation-delay as the page scrolls. If the animation-duration is 1s, that

means scrolling the whole length of the page. is one iteration of the animation.

svg {

 position: fixed; /* make sure it stays put so we can see it! */

 animation: rotate 1s linear infinite;

 animation-play-state: paused;

 animation-delay: calc(var(--scroll) * -1s);

}

You get it. It spins. Forever.

Chapter 15 Scroll Animation

101

Try changing the animation-duration to 0.5s. That allows for two

complete animation cycles as the page is scrolled down with the animation-

delay math.

Scott noted in his original demo that also setting…

The Greatest CSS-Tricks - Volume I

102

animation-iteration-count: 1;

animation-fill-mode: both;

… accounted for some “overshoot” weirdness and I can attest that I’ve seen it

too, particularly on short viewports, so it’s worth setting these too.

Scott also set the scroll-related animation properties on the :root {} itself,

meaning that it could control all the animations on the page at once. Here’s his

demo that controls three animations simultaneously:

https://codepen.io/chriscoyier/pen/NWxpJVx

Chapter 15 Scroll Animation

103

That's it for this volume, folks! I'd very much like to keep making new volumes,

and I've got some tricks I'm eyeballing already of course. But if you've got some

you think are worth of entombing here, please let me know!

https://css-tricks.com/contact/

	Chapter 1 Yellow Flash
	Chapter 2 Shape Morphing
	Chapter 3 Flexible Grids
	Chapter 4 Border Triangles
	Chapter 5 Scroll Indicator
	Chapter 6 Boxy Buttons
	Chapter 7 Self-Drawing Shapes
	Chapter 8 Perfect Font Fallbacks
	Chapter 9 Scroll Shadows
	Chapter 10 Editable Style Blocks
	Chapter 11 Draggable Elements
	Chapter 12 Hard Stop Gradients
	Chapter 13 Squigglevision
	Chapter 14 Pin Scrolling to Bottom
	Chapter 15 Scroll Animation

